Last updated: 2022-06-06

Checks: 6 1

Knit directory: apocrine_signature_mdamb453/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220427) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0c12740. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/bigwig/

Untracked files:
    Untracked:  output/meme/

Unstaged changes:
    Modified:   analysis/index.Rmd
    Modified:   analysis/motif_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 7cfa8e7 Steve Pederson 2022-05-26 Added TOMTOM
Rmd 8217e8a Steve Pederson 2022-05-10 Started explorations
html 8217e8a Steve Pederson 2022-05-10 Started explorations
Rmd b7c5dfd Steve Pederson 2022-05-10 Started analysis
html b7c5dfd Steve Pederson 2022-05-10 Started analysis
Rmd 8797971 Steve Pederson 2022-04-27 Start workflowr project.

Introduction

This analysis compares the binding sites of AR, FOXA1, GATA3 and TFAP2B in MDA-MB-453 cells. All ChIP targets were obtained from separate experiments using Vehicle as the reference condition and DHT-treatment as the key response under investigation. Given the mostly cytoplasmic location of AR in Vehicle, the primary comparison will be performed using DHT-treated samples. For all targets, the cistrome is largely conserved across conditions. Analysis using the GRAVI workflow is available here (for those given access)

For each ChIP target, the GRAVI workflow generates two peak-sets:

  1. Treatment-specific ‘Oracle peaks’, derived from merged samples and also found in \(>n\) individual samples to ensure only high-quality peaks are retained
  2. Treatment-agnostic ‘Consensus Peaks’, obtained by simply merging oracle peaks across all treatment groups. The union of the peaks obtained in each condition is used as the binding region for inclusivity.

This terminology may be used through the analysis

The particular analysis using the GRAVI workflow used reads aligned to GRCh37/hg19 and the set of genes defined in Gencode release 33. Gene definitions were imported directly from this workflow.


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     bslib_0.3.1      compiler_4.2.0   pillar_1.7.0    
 [5] later_1.3.0      git2r_0.30.1     jquerylib_0.1.4  tools_4.2.0     
 [9] getPass_0.2-2    digest_0.6.29    jsonlite_1.8.0   evaluate_0.15   
[13] tibble_3.1.7     lifecycle_1.0.1  pkgconfig_2.0.3  rlang_1.0.2     
[17] cli_3.3.0        rstudioapi_0.13  yaml_2.3.5       xfun_0.31       
[21] fastmap_1.1.0    httr_1.4.3       stringr_1.4.0    knitr_1.39      
[25] sass_0.4.1       fs_1.5.2         vctrs_0.4.1      rprojroot_2.0.3 
[29] glue_1.6.2       R6_2.5.1         processx_3.5.3   fansi_1.0.3     
[33] rmarkdown_2.14   callr_3.7.0      magrittr_2.0.3   whisker_0.4     
[37] ps_1.7.0         promises_1.2.0.1 htmltools_0.5.2  ellipsis_0.3.2  
[41] httpuv_1.6.5     utf8_1.2.2       stringi_1.7.6    crayon_1.5.1